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FLOW STRUCTURE NEAR THE TRAILING EDGE OF A PLATE 

V. V. Bogolepov UDC 532.526.011:518.5 

Solutions were obtained in [1-3] for the vicinity of the trailing edge of a plane plate 
at high but precritical Reynolds numbers Reo, calculated with the plate length 7 and inci- 
dent flow parameters, for subsonic and supersonic external flows, which describe the motion 
in a transition region of extent x ~ 0(~ Re$3/s) between the known Blasius flow on the plane 
plate and the flow in the wake [4]. These solutions have a singularity in the wake behind 
the plate, which can be overcome by the use of numerical methods. The presence of this sin- 
gularity indicates the need to study the flow in the region x < ~ Re73/s. 

The present study will use the method of combined asymptotic expansions as Reo § ~ to 
study the flow near the trailing edge of a plate within the region 7Re73/~ < x < ~Re73/8. It 
is found that at such lengths in the region near the plate a "compensation" flow regime is 
realized [5], wherein the solutions of [1-3] are valid for the rear edge of the plate, and a 
sinzularity of the former type exists in the wake. It is shown that in the singular region 
at x ~ O(7Re73/4), in a first approximation the flow may be described by the Navier-Stokes 
equations for an incompressible liquid. Numerical solutions are obtained for a thin plate 
and a thick plate over a wide range of local Reynolds number Re = 0-i00. Flow line patterns, 
detachment zone characteristics, and gas dynamic flow function distributions over the sur- 

face of the bodies are presented. 

i. In constructing the solutions of [1-3] to evaluate flow functions in the narrow re- 
gion near the surface of the plate, it was assumed that the flow functions change in propor- 
tion to distance from the plate surface, that the flow was viscous, and that the discontinuity 
in boundary conditions at the trailing edge of the plate produced nonlinear perturbations of 
the flow functions. Then, using the equations of motion of the liquid, we easily obtain 

~ x l / ~ , . u ~ - - . ~ x  -l/a, A p e x  2/3, , 6 ~ e x  11~. (1. t)  

Here and below we will use dimensionless variables; for this purpose all linear dimen- 
sions are referred to 7, pressure and enthalpy to poU~ and u~, respectively; the remaining 
flow functions are referred to their values in the unperturbed incident flow; 6 is the thick- 

ness of the mixing layer behind the plate edge; e = Re7 @2. 

In the flow under consideration the origin of mixing layer formation x = 0 is fixed, 
and so Eq. (i.i) describes a singularity immediately behind the trailing edge of the plate. 
Equation (i.i) is complemented by the conditions of interaction in the layer near the plate 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 95-99, May-June, 1985. Original article submitted April 3, 1984. 

386 0021-8944/85/2603-0386509.50 �9 1985 Plenum Publishing Corporation 



r T 
-1 0 I ~' -2 0 

L 
/ 

Fig. 1 Fig. 2 

4 a:~ 

with the external subsonic or supersonic flow Ap ~ 5/x, and then we obtain estimates for 
scales and flow functions in the wall region (region III of [1-3]) x < 3/4 y~ Es/~ u ~ i/4 
v~ ~I ", Ap ~ ~I/2. 

If we now consider regions of length E s/2 < x < s $4, i.e., shorter than in [1-3], Eq. 

(i.I) remains in force, and the flow on the wall will interact with the wall portion of the 
boundary layer at the trailing edge of the plate [5]. We then have a "compensation" type 
flow, wherein the interaction conditions are localized in character, and the flow near the 
plate remains unperturbed, i.e., like that of [1-3] at the trailing edge of the plate, and 

the solution for the wake is in fact the first term of the coordinate expansion of the solu- 
tion for a region x ~ 3/4 in extent (3). 

2. The considerations of Sec. 1 permit construction of a solution of the Navier--Stokes 
equation in the vicinity of the singular region, where the longitudinal and transverse veloc- 
ity components become equal in order of magnitude. It follo}zs from Eq. (I.i) that this is 
valid in a region with characteristic dimensions x ~ y ~ 0(s3/2), for which it is necessary 

to introduce new independent variables and asymptotic expansions for the flow functions: 

x ~ 8a/2x~, y --~ 83/2yl, 

u(x, g; e) = 81/2ul(xl, g!) -~- . . . .  v(x, g; e) : sl/2ul(xl, gz) ~- . . . .  ( 2 . 1 )  

p ( x , g ; e )  = l / ? M ~  + 8~/2p~ + ep~(x~, g~) + . . . .  p (x, y; e) = u~ + . . . .  

p(x, g; e) = p~ § . . . .  h(x,  g; e) = h~ -P ~w2h~(x~, gO -[- . . .  

Here all variables are conventional; the subscript w denotes variables on the plate sur- 
face at the trailing edge, which will differ for subsonic and supersonic external incident 
f lows. 

Substitution of the expansions of Eq. (2.1) in the Navier--Stokes equations and per- 

formance of the limiting transform as c § 0 shows that in the first approximation the flow 

in the region of the trailing edge of the plate with characteristic dimensmons x ~ y ~ O(c ) 
is described by Navier--Stokes equations for an imcompressible liquid: 

a~ a~ a~ a~ ap t (a~ a~u i 
a x + ~ g = O '  U Tx -l- t'a-~Y + a-x = R~ \-~x~ zr ay2 ] ' ( 2 . 2 )  

r U ~x + V5-~y + ~~ = ~-~ \-~~ + ay2 } ,  U ~x + V ag l:lePr k ax~ + ag~ j ,  

A 2 no p~ a~/~,  A (aulayh , B=(ahlay),~. 

Here the coordinates x, y are refered to some dimension in the flow region a,; the 
velocity components u, v, and the perturbations in enthalpy h and pressure p are refered to 
their values and twice the velocity head in the incident shear flow at a distance al from 

the plate surface, respectively; Re is the local Reynolds number; Pr, the Prandtl number, is 
taken equal to 0.7 in all calculations. In Eq. (2.2) and below, we will omit the subscript 
1 for simplicity. 

On the surface of the body flowed over the normal nonpenetration and adhesion condi- 
tions must be satisfied: 

: v : O, (2.3) 

3 8 7  
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while on the symmetry line in the wake the conditions of symmetry and smoothness of the pro- 
files of the functions u, v, and h must be satisfied: 

# u / O g  = v = Oh /Oy  : O. (2.4) 

The external boundary conditions are obtained by union with the incident shear flow: 

u-+y, h ~ g (x-~ --oo or g-~oo), (2.5) 

in the wake the solution for the region under consideration must transform to an expression 

of the form of Eq. (i.i): 

u ~ xl/3, h ~ xl/3(x --~ co). (2.6) 

In the notation used, the dimensionless shear stress T and thermal flux q are expressed by 

2 T = ~ y l e p o u o ~ A  = 8u/Oy + Ov/Ox, q = - - q ~  P r / e p o u ~ t ~ B :  Oh/On 

(where n is the external normal to the body surface) and in the incident shear flow z = q = i. 

The boundary problem of Eqs. (2.2)-(2.6) without the equation of conservation of energy 

was formulated and partially studied in [6]. 

3. The boundary problem of Eqs. (2.2)-(2.6) was solved numerically in traditional flow 
function and vorticity variables. The method for solution of such problems was detailed in 

[7]. 

In flow over a plane pate there is no characteristic length in the boundary problem, and 
we may take a~ = (Dw/APw)~2, with the local Reynolds number Re = I. In this case the flow is 
Undetached everywhere, and flow acceleration in the wake behind the plate produces a signifi- 
cant shift in flow lines toward the line of symmetry (Fig. i). The shear stress T increases 

abruptly upon approach to the trailing edge of the plate and agrees qualitatively with the 
expression presented in [8]: < ~ x -2 as x § 0 (curve i, Fig. 2, left-hand ordinate scale). The 
longitudinal velocity u on the symmetry line (curve 2, Fig. 2, right-hand ordinate scale) at 
x ~ 0.5 agrees well with the expression of [8]: u ~ x $2 as x § 0, while at x ~ i0 it agrees 

with the asymptotic expression (i.i). 

In the motion studied the flow accelerates due to the action of viscosity forces in the 

mixing layer behind the plate. Near the plate surface the velocities are low and the flow 
here is described by the Stokes equation, i.e., viscous forces must be compensated by pressure 
forces. Therefore, the increase in the value of T with approach to the trailing edge of the 
plate is accompanied by an increase in perturbation of the pressure p (curve 3, Fig. 2, left- 
hand ordinate scale). However, directly beyond the trailing edge, where the velocities are 
still low, in view of boundary conditions (2.4) the viscosity forces decrease rapidly, which 
leads to a corresponding increase in pressure at x ~ 0. At some distance from the trailing 
edge the flow in the mixing layer will still be described by the boundary-layer equations for 
a "compensated" flow regime [5]. Then flow acceleration in the mixing region and shifting 
of flow lines toward the line of symmetry cause braking of the external subsonic portion of 
the boundary layer and a corresponding increase in pressure, which at x ~ i0 agrees well with 

the asymptotic Eq. (i.i). 
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The calculations performed permit determination of the change in resistance of one side 

of  a p l a n e  p l a t e  due to change in  the  shea r  s t r e s s  m in  a s i n g u l a r  r e g i o n  of  e x t e n t  x % O(m ~2) 
0 

which is characterized by the value of ml ~ 5 ( m - - l )  dx~_~l,03t. 

The distribution of the thermal flux q over plate surface differs little from the distribu- 
0 

tion of shear stress ~, and is not shown in Fig. 2. The quantity q~= S (q -- i)dm~i,0@6 char- 

acterizes the change in heating of one side of the plate in the vicinity of the ~railing edge. 
The perturbation in enthalpy h in the wake behind the plate on the symmetry line changes in 
practically the same manner as u, and so is also not shown in Fig. 2. 

Boundary problem (2.2)-(2.6) also describes flow over the trailing edge of a plate with 
3 / 2  �9 �9 i1 11 �9 characteristic thickness ~ O(s ), slnce the solutlon for the compensated flow regime in a 

�9 �9 ~/~ ~/,+ ~. d~ �9 region with characteristic dlmensmons t < x < ~ , y % vx In the first approxmmation as 
§ 0 remains unchanged. In this case, for the characteristic length we choose one half the 

plate thickness (al = <3/2a/2, ~i '% 0(i)). In performing the calculations the previousnumeri- 

cal schemewas used, with local Reyolds number varied over a wide range (Re = 0-i00). 

Figures 3, 4 show the flow line distribution in the flow field at Re = 0 and 3. The solu- 
tion at Re = 0 corresponds to the Stokes limit, the flow being undetached in this case. At 
Re > 0 a detachment zone is formed, the length of which L increases practically in proportion 
to the local Reynolds number value: L ~ 0.42 Re (see Table i). The transverse dimension of 
the detachment zone changes insignificantly and at practically all Re the detachment zone be- 
gins barely below the upper edge of the plate section (for example, y = 0.88 for Re = 3 and 
y = 0.96 at Re = i00). 

TABLE 1 

Re 

L 

3 

1,4 

0,799 

lo 

q2 

P2 --0,447 

30 ] 40 

12,2 10,t 

0,451 0,408 0,557 

ql 0,465 0,287 0,207 I 0,180 0,165 

0,968 0,781 

0,102 

0,655 i 0,650 

0,386 0,442 

50 

2O 

0,355 
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The distribution of shear stress ~ (solid lines) and pressure perturbation Rep (dashed 
lines) over plate surface for local Reynolds numbers Re = 0, 3, and I00 (curves i-3) are 
shown in Fig. 5. It is evident that with growth in Re the perturbations in �9 and p decrease, 
since due to increase in the extent of the detachment zone, the rear profile flowed over be- 
comes ever smoother. This same fact explains the localization of flow perturbation near the 
edge of the plate section with increase in Re. 

Figure 6 shows the change in longitudinal velocity u (solid lines) and pressure perturba- 
tlon Rep (dashed lines) along the line of symmetry for the same Re values as in Fig. 5. It 
is clearly evident that with increase in Re the extent of the reverse flow region increases. 
However, the limited size of the computation region does not permit tracing flow function be- 
havior all the way to their exit to asymptotic values, Eq. (i.i). 

1 

�9 S Table 1 also shows values of the quantities T1, ql , q2 = qdy (which characterizes heating 
0 

1 

of the plate face) and p~=Relpdy (which characterizes the pressure resistance of the plate 
0 

face) for various values of Re. it follows from these results that the pressure resistance 

of a thick plate p2 = 0 at Re ~ 7.5. 
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